Given an array of N integers (both positive and negative), find the sub-sequence with largest absolute sum.
For ex: Let A = {1 2 -5 4 5 -1 2 -11} then largest absolute sum is 11 with sub-sequence {-11}.
For ex: Let A = {1 2 -5 4 5 -1 2 -11} then largest absolute sum is 11 with sub-sequence {-11}.
Solution :
A simpler variant was previously discussed [Largest consecutive sum], here the difference being absolute sum.
We use the same algorithm of O(N) here too first to get highest positive sum and then highest negative sum and find the one with higher absolute value as the answer.
Complexity :We use the same algorithm of O(N) here too first to get highest positive sum and then highest negative sum and find the one with higher absolute value as the answer.
- Time : O(N)
- Space : O(1)
void largest_consecutive_sum(int input[], int N, int *start, int *end, int *max){
*start = *end = *max = -1;
int current = -1;
int sum = 0;
for(int i=0; i<N; i++){
}int current = -1;
int sum = 0;
for(int i=0; i<N; i++){
sum += input[i];
if(sum < 0){
if(sum > *max){
}if(sum < 0){
sum = 0;
current = i+1;
}current = i+1;
if(sum > *max){
*max = sum;
*start = current;
*end = i;
}*start = current;
*end = i;
void largest_consecutive_absolute_
int pos_start, pos_end, pos_max, neg_start, neg_end, neg_max;
int i;
largest_consecutive_sum(input, N, &pos_start, &pos_end, &pos_max);
for(i=0; i<N; i++){
largest_consecutive_sum(input, N, &neg_start, &neg_end, &neg_max);
if(pos_max > neg_max){
else {
}int i;
largest_consecutive_sum(input, N, &pos_start, &pos_end, &pos_max);
for(i=0; i<N; i++){
input[i] = -1*input[i];
}largest_consecutive_sum(input, N, &neg_start, &neg_end, &neg_max);
if(pos_max > neg_max){
*start = pos_start;
*end = pos_end;
*max = pos_max;
}*end = pos_end;
*max = pos_max;
else {
*start = neg_start;
*end = neg_end;
*max = neg_max;
}*end = neg_end;
*max = neg_max;
No comments:
Post a Comment